Surfing Data Signal Processing

Surfing Data Signal Processing

Brief

Turning the collected surfing data into surfboards. The different attempts to accurately categorize specific surfing maneuvers based on movement data. Developing an Activity Recognition system using visual signal processing techniques.

Objectives

test

Long Text

Part 3 of 3

Part 1 Concept
Part 2 Prototype Blog
Part 3 Software Development

Turning the collected surfing data into surfboards. The different attempts to accurately categorize specific surfing maneuvers based on movement data. Developing an Activity Recognition system using visual signal processing techniques. The ultimate goal of building a cluster machine learning event detection system. Methods of indexing surfboards based on shape and function.

Event Detection

Transforming how the movement data collected from the IMU is categorized into specific surf maneuvers. Activity recognition aims to recognize one or more agents' actions and goals from a series of observations on the agent's actions and the environmental conditions. The previous processing attempts have been processed with video tracking checkmarks.

By splitting the surfing session into these events, we can cross-reference the pressure pad and build a picture of how the surfer interacts with their equipment. The act of surfing is composed of linked turns, pumps, stalls, redirections, and tricks. Determining when one move starts and the next begins is an important step in quantizing the sport.

The process for building this dataset will require a variety of surfers to repeat specific maneuvers with external sensors and imaging to gather snapshots corresponding to each trick. After a sufficient amount of data is collected, a series of cluster models can be trained to recognize a breadth of similar events to categorize each maneuver.

Event-Detection Figure 1 Event Detection Model Single stream of IMU data is categorized into specific movements. The four bottom dots represent the average of the four pressure sensor quadrants.

Board Indexing System

Categorizing shapes for behavior. The methodology of creating an index that can be referenced to create a variety of custom surfboards. While generating shapes from the G-code was an original intention for the project, it seemed that a more scalable approach would be to leverage existing shapes. By doing so, we can keep the system up to date with the most current shaping innovations. Each board is divided in half and categorized by a coordinate system that corresponds to its function. i.e., a wide point forward will benefit a front footed surfer while a thin tail with benefit a back footed surfer. Fitting the generative system to this index can assign you to an existing shape or to mix and match the divided shapes to create fully new custom shapes based on the surfer with the shaper's expertise behind it.

BOARD INDEX 2 fig.2 Board Index Each board in the index is categorized by a coordinate system which corresponds to event data.

Past talks

  • WSL holdings
  • Kelly Slater Wave Company
  • Marko Foam
  • Lockheed Martin Skunkworks
  • UNlabs

To learn more or get involved
Contact: \studio@dark-labs.co

Press: Link

PATENT

An Application Bridge From The Off The Shelf Surfboard To Custom Surfboard, 18-90575
 Bridge From The Off The Shelf Surfboard To Custom Surfboard, 18-90575\*

Technology

  • Python
  • Pandas
  • CSV